# **CNC** Turning



| Contest Location                         | C-Hall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Eligibility                              | <ul> <li>Please refer to the National Technical Standards for this contest.</li> <li>Schools may send one competitor or team for every 50 paid SkillsUSA members based on local competition enrolled in a program where the scope of the contest described in the SkillsUSA Technical Content Standards reflects a major component of the program.</li> <li>REGIONAL QUALIFIER - ONLY THE TOP 3 (THREE) FROM REGIONAL COMPETITION PROCEED TO STATE CHAMPIONSHIPS</li> </ul>                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Clothing                                 | <u>Work/School Attire:</u><br>School uniform with all identifying logos/markers covered. Field specific<br>work clothing required for the work environment or that matches the<br>service conditions for the contest. This may include jeans if they are clean<br>and professional looking and are accepted in the respective field (no holes<br>or overly soiled pants). Work shoes or boots with hard sole or anti-slip<br>properties (steel toes may be required-refer to <b>Provided by Contestant</b><br>section below). Clothing should be as such that it will not get caught in<br>moving equipment or power tools. School uniforms may be worn if they<br>meet the above requirements with all identifiers covered. |  |  |  |  |  |
| Testing                                  | <ul> <li>Students should be prepared to take a written knowledge test for this contest.</li> <li>Students should also be prepared to take a SkillsUSA written knowledge test (required for all contestants).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Provided by<br>Contestant<br>(Tool List) | <ul> <li>Contestants will be required to bring their own Haas Simulator or<br/>Laptop, or computer with access to text editor i.e., Note pad or Word<br/>Pad</li> <li>(Required)Pen or pencil for notes, or written calculations.</li> <li>(Optional)Basic calculator</li> <li>NEW FOR 2023 PRESENTATION (Required)<br/>Part manufactured at contestant's facility by using CAM software.<br/>Presentation should contain the actual part, NC Program, Set up sheet and a<br/>process plan.</li> </ul>                                                                                                                                                                                                                       |  |  |  |  |  |

|                    | <ul> <li>Exhibit Halls do not open to observers until 12:00pm.</li> </ul>                    |
|--------------------|----------------------------------------------------------------------------------------------|
|                    | <ul> <li>No smart watches, earbuds and/or phones are permitted during the</li> </ul>         |
|                    | contest and/or in contest                                                                    |
|                    | <ul> <li>No contact with anyone outside of the contest area once the contest</li> </ul>      |
| Special Notes      | begins                                                                                       |
| •                  | <ul> <li>No inappropriate communication between contestants such as verbally</li> </ul>      |
|                    | degrading another contest                                                                    |
|                    | <ul> <li>No cheating on any portion of the contest such as informing another</li> </ul>      |
|                    | contestant of the skills/test prior to competing.                                            |
|                    | <ul> <li>Please refer to the 2022-2023 National Technical Standards for all</li> </ul>       |
|                    | contests. Any and all standards included may be tested in any                                |
| National Technical | competition.                                                                                 |
| Standards          | <ul> <li>In conjunction with National Standards, violations may result in student</li> </ul> |
|                    | loss of contest.                                                                             |
|                    | <ul> <li>All SkillsUSA Ohio State Championship Contest will require a short</li> </ul>       |
|                    | interview component. Students should be prepared with basic job                              |
| Destruction        | interview skills.                                                                            |
| Resume             | <ul> <li>All contestants must have a hard copy of a one (1) page personal</li> </ul>         |
|                    | resume.                                                                                      |
|                    |                                                                                              |



Haas Automation is a sponsor of the 2023 SkillsUSA CNC Machining Competitions. We are committed to providing materials for Regional and State competitions throughout the United States for the 2023 CNC Machining Competitions.

In addition, we are providing a list of resources to help prepare students to enter the CNC Machining competitions, and the workforce of our industry, feeling well-equipped for success. For resources, please see the following pages, or visit our website at haascnc.com.

For Regional- and State-level SkillsUSA testing materials, please contact your local Haas Factory Outlet distributor, or the SkillsUSA State Director in your state.



## About the Competition:

Regional, and State-level CNC Milling Specialist, CNC Turning Specialist and CNC Technician competitions will test three major skills areas (1) a CNC theory test, (2) G&M code programming, and(3) CAD/CAM proficiency.

### CNC Theory Test:

The CNC theory test is set of multiple-choice questions closely related to the CNC subject area of focus for the competition, i.e. milling, or turning. Competitors must select the best answer that applies, reading each question carefully before selecting an answer. Contestant numbers must be written on the test in the space provided on each page, or the competitor will receive 0 points.

#### Programming:

The g & m code programming test will provide competitors with access to a part drawing, operation sheet, tooling list and an NC code template file. The NC code template file is incomplete, and it is the competitor's job to use the provided documents to complete this NC code file so that if run, the program would produce a machined part that is accurate to the part drawing provided. The drawing will be complete with multiple views making it easy for competitors to visualize the part and understand its geometry. The operation sheet will provide a sequence for each operation as well as basic tooling information and instruction. Contestant numbers must be written within the NC Code file, as well as within the document name when saving. If this step is missed, the competitor will receive 0 points. Remember, save early, save often.

Competitors will be provided with all testing documents mentioned above, but <u>competitors must</u> provide the following items in order to successfully compete.

- (Required) Laptop, or computer with access to text editor i.e. Notepad or Word Pad
- (Required) Pen or pencil for notes, or written calculations
- (Optional) Basic calculator

NOTE: Judges have access to a theory test key, a working copy of the NC Code file and a programming score card each which can be used to calculate the appropriate points for the SkillsUSA State Score Card.



## **Recommended Competitor Preparation**

Set yourself up for success by committing to continuous learning. Haas Automation, and other supporting partners, offer an array of opportunities for everyone to learn about principles of CNC machining practice. Get ahead by preparing yourself as a competitor, before and after competitions.

### Haas Certification Program

These online courses are designed to provide the basic knowledge necessary to get started as a CNC machine operator or CNC machinist. They offer an introduction to basic CNC machine operation, proper machine safety, and fundamental machining processes. For more information, and to sign-up for the free online courses, visit: <u>learn.haascnc.com</u>

#### Haas Programming Workbooks

These programming workbooks provide the basic principles necessary to program Haas Mills, and Haas Lathes. Numerous exercises throughout the workbook enable users to build their skills at their own pace. Answer Books are also available. To download, visit the Haas Learning Resources webpage: <a href="https://www.haascnc.com/myhaas/Haas\_Learning\_Resources.htm">https://www.haascnc.com/myhaas/Haas\_Learning\_Resources.htm</a>

### Haas Video Library

The Haas Video Library gives you access to thousands of videos recorded specifically to help Haas CNC users everywhere to grow their skills and understanding of CNC machining to maximize their abilities. Access videos directly from the Haas Video Library, via the Haas YouTube channel or using the Quick Picklist of the Haas Learning Resources page which organizes a handful of videos from entry- to advanced-level to help get you started. For the complete Video Library, visit: <a href="https://www.haascnc.com/video.html">https://www.haascnc.com/video.html</a> Or, for the shortened Quick Picklist, visit: <a href="https://www.haascnc.com/myhaas/Haas\_Learning\_Resources.html">https://www.haascnc.com/myhaas/Haas\_Learning\_Resources.html</a>

#### CAM Programming Training

In 2022 the 5-Axis CNC Programmer competition is the only to require CAM. Various CAM partners provide access to software and video training programs. Please visit training partner's websites for more information at <a href="https://help.autodesk.com/view/fusion360/ENU/courses/">https://help.autodesk.com/view/fusion360/ENU/courses/</a> or <a href="https://help.autodesk.com/view/fusion360/ENU/courses/">https://help.autodesk.com/view/fusion360/ENU/courses/</a> or <a href="https://https://help.autodesk.com/view/fusion360/ENU/courses/">https://help.autodesk.com/view/fusion360/ENU/courses/</a> or



# Competitor Instruction:

## Theory Test:

Add your contestant number in the space provided. If printed, add contestant number on each page. For each multiple-choice question, select the best answer that applies. Be sure to read each question carefully before selecting the answer. Write neatly. Make sure your contest number is on the test before submitting. Questions without an answer, receive 0 points.

### Programming:

Open NC Code Template file, save the document with your contestant number in the name. Add your contestant number in the beginning of the program as a comment. Save again. Use the provided documents (print, setup sheet, operation sheet, etc.) to fill in the NC Code Template file for each missing, or incomplete operation. When done, check the entire code start to finish, and save. Competitor code should resemble a perfect program, which, if run on a machine would produce a machined part that is accurate to the print.

#### CAD/CAM:

Each student should first create a 3D model of the print given. After completing the model the student should use the model to create tool paths in the cam software of their choice. After successfully posting the code student should then create a tooling list, process plan, and a set up sheet. The student should then use all of the materiel that they have made to make the part on machines at their facility. The student is to have the tooling list, process plan, set up sheet, nc program, and 3D model saved on a flash drive in a folder that is named their contestant number. Student should have the finished part with them as well on the day of the contest. The part is going to be inspected by the panel of judges.



#### DECIMAL EQUIVALENT CHART .0059 – .0980

| Decimal<br>Equiv. | Drill<br>Size                | mm    | Tap<br>Sizes | Decimal<br>Equiv. | Drill<br>Size                | mm    | Tap<br>Sizes |
|-------------------|------------------------------|-------|--------------|-------------------|------------------------------|-------|--------------|
| <br>.0059         | 97                           | 0.150 |              | .0320             | 67                           | 0.813 |              |
| .0053             | 96                           | 0.160 |              | .0320             | 66                           | 0.838 |              |
| .0005             | 95                           | 0.170 |              | .0350             | 65                           | 0.838 |              |
| .0007             | 94                           | 0.170 |              | .0360             | 64                           | 0.914 |              |
| .0075             | 93                           | 0.191 |              | .0370             | 63                           | 0.940 |              |
| .0079             | 92                           | 0.201 |              | .0380             | 62                           | 0.965 |              |
| .0083             | 91                           | 0.211 |              | .0390             | 61                           | 0.991 |              |
| .0087             | 90                           | 0.221 |              | .0400             | 60                           | 1.016 |              |
| .0091             | 89                           | 0.231 |              | .0410             | 59                           | 1.041 |              |
| .0095             | 88                           | 0.241 |              | .0420             | 58                           | 1.067 |              |
| .0100             | 87                           | 0.254 |              | .0430             | 57                           | 1.092 |              |
| .0105             | 86                           | 0.267 |              | .0465             | 56                           | 1.181 |              |
| .0110             | 85                           | 0.279 |              | .0469             | <sup>3</sup> /64             | 1.191 | #0-80        |
| .0115             | 84                           | 0.292 |              | .0520             | 55                           | 1.321 |              |
| .0120             | 83                           | 0.305 |              | .0550             | 54                           | 1.397 |              |
| .0125             | 82                           | 0.318 |              | .0595             | 53                           | 1.511 | #1-64+#1-72  |
| .0130             | 81                           | 0.330 |              | .0625             | 1 <sub>/16</sub>             | 1.588 |              |
| .0135             | 80                           | 0.343 |              | .0635             | 52                           | 1.613 |              |
| .0145             | 79                           | 0.368 |              | .0670             | 51                           | 1.702 |              |
| .0156             | <sup>1</sup> / <sub>64</sub> | 0.397 |              | .0700             | 50                           | 1.778 | #2-56+#2-64  |
| .0160             | 78                           | 0.406 |              | .0730             | 49                           | 1.854 |              |
| .0180             | 77                           | 0.457 |              | .0760             | 48                           | 1.930 |              |
| .0200             | 76                           | 0.508 |              | .0781             | <sup>5</sup> / <sub>64</sub> | 1.984 |              |
| .0210             | 75                           | 0.533 |              | .0785             | 47                           | 1.994 | #3-48        |
| .0225             | 74                           | 0.572 |              | .0810             | 46                           | 2.057 |              |
| .0240             | 73                           | 0.610 |              | .0820             | 45                           | 2.083 | #3-56        |
| .0250             | 72                           | 0.635 |              | .0860             | 44                           | 2.184 |              |
| .0260             | 71                           | 0.660 |              | .0890             | 43                           | 2.261 | #4-40        |
| .0280             | 70                           | 0.711 |              | .0935             | 42                           | 2.375 | #4-48        |
| .0292             | 69                           | 0.742 |              | .0938             | <sup>3</sup> /32             | 2.381 |              |
| .0310             | 68                           | 0.787 |              | .0960             | 41                           | 2.438 |              |
| .0313             | 1 <sub>/32</sub>             | 0.794 |              | .0980             | 40                           | 2.489 |              |

 Tap drill sizes above based on approximately 75% full thread

 Tap # Sizes
 #0 = .060
 #1 = .073
 #2 = .086
 #3 = .099
 #4 = .112

 Tap # x .013 + .060 = Thread # OD

2 MACHINIST'S CNC REFERENCE GUIDE

θ/

#### DECIMAL EQUIVALENT CHART .3020 - 1.000

| Decimal<br>Equiv. | Drill<br>Size                 | mm     | Tap<br>Sizes                     | Decimal<br>Equiv. | Drill<br>Size                 | mm     | Tap<br>Sizes                                                          |
|-------------------|-------------------------------|--------|----------------------------------|-------------------|-------------------------------|--------|-----------------------------------------------------------------------|
| .3020             | N                             | 7.671  |                                  | .5625             | <sup>9</sup> /16              | 14.288 | <sup>5</sup> / <sub>8</sub> -18                                       |
| .3125             | <sup>5</sup> /16              | 7.938  | <sup>3</sup> / <sub>8</sub> -16  | .5781             | <sup>37</sup> /64             | 14.684 | <sup>5</sup> /8-24                                                    |
| .3160             | 0                             | 8.026  |                                  | .5938             | <sup>19</sup> /32             | 15.081 |                                                                       |
| .3230             | Р                             | 8.204  |                                  | .6094             | <sup>39</sup> / <sub>64</sub> | 15.478 | <sup>11</sup> / <sub>16</sub> -12                                     |
| .3281             | <sup>21</sup> / <sub>64</sub> | 8.334  |                                  | .6250             | <sup>5</sup> /8               | 15.875 |                                                                       |
| .3320             | Q                             | 8.433  | <sup>3</sup> /8-24               | .6406             | <sup>41</sup> / <sub>64</sub> | 16.272 | <sup>11</sup> / <sub>16</sub> -20 • <sup>11</sup> / <sub>16</sub> -24 |
| .3390             | R                             | 8.611  |                                  | .6563             | <sup>21</sup> / <sub>32</sub> | 16.669 | <sup>3</sup> / <sub>4</sub> -10                                       |
| .3438             | <sup>11</sup> / <sub>32</sub> | 8.731  | <sup>3</sup> /8-32               | .6719             | <sup>43</sup> / <sub>64</sub> | 17.066 |                                                                       |
| .3480             | S                             | 8.839  |                                  | .6875             | <sup>11</sup> / <sub>16</sub> | 17.462 | <sup>3</sup> / <sub>4</sub> -16                                       |
| .3580             | Т                             | 9.093  |                                  | .7031             | <sup>45</sup> / <sub>64</sub> | 17.859 | <sup>3</sup> / <sub>4</sub> -20                                       |
| .3594             | <sup>23</sup> / <sub>64</sub> | 9.128  |                                  | .7188             | <sup>23</sup> /32             | 18.256 |                                                                       |
| .3680             | U                             | 9.347  | <sup>7</sup> / <sub>16</sub> -14 | .7344             | 47 <sub>/64</sub>             | 18.653 | <sup>13</sup> / <sub>16</sub> -12                                     |
| .3750             | <sup>3</sup> /8               | 9.525  |                                  | .7500             | <sup>3</sup> /4               | 19.050 | <sup>13</sup> / <sub>16</sub> -16                                     |
| .3770             | V                             | 9.576  |                                  | .7656             | <sup>49</sup> / <sub>64</sub> | 19.447 | <sup>13</sup> / <sub>16</sub> -20,7/ <sub>8</sub> -9                  |
| .3860             | W                             | 9.804  |                                  | .7813             | <sup>25</sup> /32             | 19.844 |                                                                       |
| .3906             | <sup>25</sup> / <sub>64</sub> | 9.922  | <sup>7</sup> / <sub>16</sub> -20 | .7969             | <sup>51</sup> / <sub>64</sub> | 20.241 | <sup>7</sup> /8-14                                                    |
| .3970             | Х                             | 10.084 |                                  | .8125             | <sup>13</sup> /16             | 20.637 |                                                                       |
| .4040             | Y                             | 10.262 | <sup>7</sup> / <sub>16</sub> -28 | .8281             | <sup>53</sup> /64             | 21.034 | <sup>7</sup> /8-20                                                    |
| .4063             | <sup>13</sup> /32             | 10.319 |                                  | .8438             | 27/32                         | 21.431 |                                                                       |
| .4130             | Z                             | 10.490 |                                  | .8594             | <sup>55</sup> / <sub>64</sub> | 21.828 | <sup>15</sup> / <sub>16</sub> -12                                     |
| .4219             | <sup>27</sup> / <sub>64</sub> | 10.716 | <sup>1</sup> / <sub>2</sub> -13  | .8750             | 7 <sub>/8</sub>               | 22.225 | <sup>15</sup> / <sub>16</sub> -16•1.0-8                               |
| .4375             | <sup>7</sup> /16              | 11.113 |                                  | .8906             | 57 <sub>/64</sub>             | 22.622 | <sup>15</sup> / <sub>16</sub> -20                                     |
| .4531             | <sup>29</sup> /64             | 11.509 | <sup>1</sup> / <sub>2</sub> -20  | .9063             | <sup>29</sup> /32             | 23.019 |                                                                       |
| .4688             | <sup>15</sup> /32             | 11.906 | <sup>1</sup> / <sub>2</sub> -28  | .9219             | <sup>59</sup> /64             | 23.416 | 1.0-12                                                                |
| .4844             | <sup>31</sup> / <sub>64</sub> | 12.303 | <sup>9</sup> / <sub>16</sub> -12 | .9375             | <sup>15</sup> /16             | 23.813 |                                                                       |
| .5000             | 1 <sub>/2</sub>               | 12.700 | <sup>9</sup> / <sub>16</sub> -18 | .9531             | <sup>61</sup> / <sub>64</sub> | 24.209 | 1.0-20                                                                |
| .5156             | <sup>33</sup> /64             | 13.097 | <sup>9</sup> / <sub>16</sub> -24 | .9688             | <sup>31</sup> /32             | 24.606 |                                                                       |
| .5313             | 17 <sub>/32</sub>             | 13.494 | <sup>5</sup> / <sub>8</sub> -11  | .9844             | <sup>63</sup> /64             | 25.003 |                                                                       |
| .5469             | <sup>35</sup> / <sub>64</sub> | 13.891 |                                  | 1.000             | 1                             | 25.400 |                                                                       |
|                   |                               |        |                                  |                   |                               |        |                                                                       |

Tap drill sizes above based on approximately 75% full thread A decimal equivalent chart can be displayed on a Haas control by pressing the HELP/ CALC button, and then selecting the Drill Table tab. Use the jog handle or cursor keys Ī,

to scroll through the chart.

4 MACHINIST'S CNC REFERENCE GUIDE

#### DECIMAL EQUIVALENT CHART .0995 – .2969

| Decimal<br>Equiv.                                            | Drill<br>Size                 | mm    | Tap<br>Sizes | Decimal<br>Equiv. | Drill<br>Size                  | mm    | Tap<br>Sizes                     |
|--------------------------------------------------------------|-------------------------------|-------|--------------|-------------------|--------------------------------|-------|----------------------------------|
| .0995                                                        | 39                            | 2.527 |              | .1875             | <sup>3</sup> /16               | 4.763 | #12-32                           |
| .1015                                                        | 38                            | 2.578 | #5-40        | .1890             | 12                             | 4.801 |                                  |
| .1040                                                        | 37                            | 2.642 | #5-44        | .1910             | 11                             | 4.851 |                                  |
| .1065                                                        | 36                            | 2.705 | #6-32        | .1935             | 10                             | 4.915 |                                  |
| .1094                                                        | 7 <sub>/64</sub>              | 2.778 |              | .1960             | 9                              | 4.978 |                                  |
| .1100                                                        | 35                            | 2.794 |              | .1990             | 8                              | 5.055 |                                  |
| .1110                                                        | 34                            | 2.819 |              | .2010             | 7                              | 5.105 | <sup>1</sup> / <sub>4</sub> -20  |
| .1130                                                        | 33                            | 2.870 | #6-40        | .2031             | <sup>13</sup> /64              | 5.159 |                                  |
| .1160                                                        | 32                            | 2.946 |              | .2040             | 6                              | 5.182 |                                  |
| .1200                                                        | 31                            | 3.048 |              | .2055             | 5                              | 5.220 |                                  |
| .1250                                                        | 1/8                           | 3.175 |              | .2090             | 4                              | 5.309 |                                  |
| .1285                                                        | 30                            | 3.264 |              | .2130             | 3                              | 5.410 | <sup>1</sup> / <sub>4</sub> -28  |
| .1360                                                        | 29                            | 3.454 | #8-32•#8-36  | .2188             | 7 <sub>/32</sub>               | 5.556 | <sup>1</sup> / <sub>4</sub> -32  |
| .1405                                                        | 28                            | 3.569 |              | .2210             | 2                              | 5.613 |                                  |
| .1406                                                        | <sup>9</sup> / <sub>64</sub>  | 3.572 |              | .2280             | 1                              | 5.791 |                                  |
| .1440                                                        | 27                            | 3.658 |              | .2340             | А                              | 5.944 |                                  |
| .1470                                                        | 26                            | 3.734 |              | .2344             | <sup>15</sup> / <sub>64</sub>  | 5.953 |                                  |
| .1495                                                        | 25                            | 3.797 | #10-24       | .2380             | В                              | 6.045 |                                  |
| .1520                                                        | 24                            | 3.861 |              | .2420             | С                              | 6.147 |                                  |
| .1540                                                        | 23                            | 3.912 |              | .2460             | D                              | 6.248 |                                  |
| .1563                                                        | 5 <sub>/32</sub>              | 3.969 |              | .2500             | <sup>1</sup> / <sub>4</sub> &E | 6.350 |                                  |
| .1570                                                        | 22                            | 3.988 |              | .2570             | F                              | 6.528 | <sup>5</sup> / <sub>16</sub> -18 |
| .1590                                                        | 21                            | 4.039 | #10-32       | .2610             | G                              | 6.629 |                                  |
| .1610                                                        | 20                            | 4.089 |              | .2656             | <sup>17</sup> /64              | 6.747 |                                  |
| .1660                                                        | 19                            | 4.216 |              | .2660             | н                              | 6.756 |                                  |
| .1695                                                        | 18                            | 4.305 |              | .2720             | 1                              | 6.909 | <sup>5</sup> / <sub>16</sub> -24 |
| .1719                                                        | <sup>11</sup> / <sub>64</sub> | 4.366 |              | .2770             | J                              | 7.036 |                                  |
| .1730                                                        | 17                            | 4.394 |              | .2810             | К                              | 7.137 |                                  |
| .1770                                                        | 16                            | 4.496 | #12-24       | .2813             | 9 <sub>/32</sub>               | 7.144 | <sup>5</sup> / <sub>16</sub> -32 |
| .1800                                                        | 15                            | 4.572 |              | .2900             | L                              | 7.366 |                                  |
| .1820                                                        | 14                            | 4.623 | #12-28       | .2950             | М                              | 7.493 |                                  |
| .1850                                                        | 13                            | 4.699 |              | .2969             | <sup>19</sup> / <sub>64</sub>  | 7.541 |                                  |
| Tap drill sizes above based on approximately 75% full thread |                               |       |              |                   |                                |       |                                  |

Tap drill sizes above based on approximately 75% full thread Tap # Sizes #5 = .125 #6 = .138 #8 = .164 #10 = .190 #12 = .216 Tap # x .013 + .060 = Thread # OD

MACHINIST'S CNC REFERENCE GUIDE

## MILL AND LATHE FORMULAS

#### Cutting Speed (surface feet/min.) SFM = 0.262 x DIA x RPM

**Revolutions Per Minute**  $RPM = 3.82 \times SFM \div DIA$ 

Feed Rate (in/min.)

 $IPM = FPT \times T \times RPM$ Feed Per Revolution  $FPR = IPM \div RPM$ 

Feed Per Tooth (in)

 $\mathsf{FPT} = \mathsf{IPM} \div (\mathsf{RPM} \mathsf{~x~T})$ Metal Removal Rate

 $MRR = W \times d \times F$ 

 $IPM = IPR \times RPM$ 

Converting IPR to IPM

Converting IPM to IPR IPR = IPM ÷ RPM

Converting SFM to SMPM  $SMPM = SFM \times .3048$ 

Converting IPR to MMPR  $MMPR = IPR \times 25.40$ 

Distance over Time (in minutes)  $L = IPM \times TCm$ 

Time Cutting over Distance (Mill) (minutes)

 $TCm = L \div IPM$ 

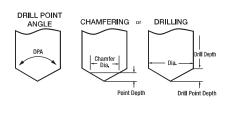
Time Cutting over Distance (Mill) (seconds)  $TCs = L \div IPM \times 60$ 

#### INCH METRIC CONVERSION

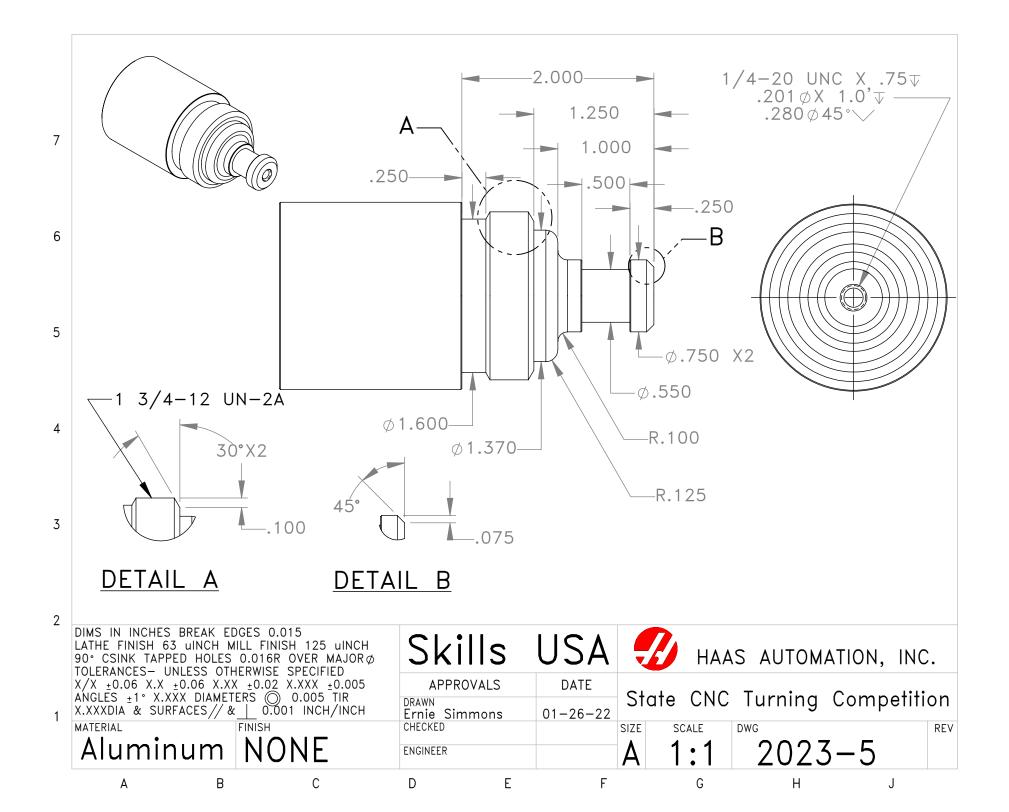
mm x 0.03937 = in. in. x 25.4 = mm m x 39.37 = in. m x 3.2808 = ft m x 1.0936 = vd km x 0.621 = mi Celsius to Fahrenheit (°C x 1.8) + 32 = °F

in. x 0.0254 = m ft x 0.3048 = m yd x 0.9144 = m mi x 1.6093 = km

Fahrenheit to Celsius (°F - 32) ÷ 1.8 = °C


## DRILL POINT DEPTH & COUNTERSINK DIAMETER FORMULAS




#### To calculate drill tip depth for a chamfer diameter, or drill point depth for a required drilling depth:

| Drill Point<br>Angle (DPA) | Factor                     |
|----------------------------|----------------------------|
| 60°                        | 0.866 x Dia. = Point Depth |
| 82°                        | 0.575 x Dia. = Point Depth |
| 90°                        | 0.500 x Dia. = Point Depth |
| 118°                       | 0.300 x Dia. = Point Depth |
| 120°                       | 0.288 x Dia. = Point Depth |
| 135°                       | 0.207 x Dia. = Point Depth |
|                            |                            |

#### Example: To calculate for a 118-degree drill tip depth, multiply the dia. by 0.3 i.e., 0.250 drill diameter x .3 = 0.075 drill tip depth



MACHINIST'S CNC REFERENCE GUIDE 27

